博客
关于我
线段树(高级二叉树)
阅读量:366 次
发布时间:2019-03-04

本文共 2664 字,大约阅读时间需要 8 分钟。

线段树的实现是解决区间查询和点更新问题的高效数据结构。以下是对问题的详细解答和代码实现。

问题分析

我们需要处理两个主要操作:区间查询最高分和点更新分数。线段树能够在O(logN)的时间复杂度内完成这些操作,适用于大量数据的情况。

方法思路

  • 线段树构建:递归构建线段树,每个节点存储区间内的最高分。
  • 点更新:当某个学生的分数被更新时,沿着树向下更新,确保路径上的所有相关节点的最大值正确。
  • 区间查询:查询区间内的最高分时,递归地查询左右子树并取最大值。
  • 解决代码

    #include 
    #include
    using namespace std;int arr[200005];int tree[400002]; // 线段树大小为4*nvoid build_tree(int arr[], int tree[], int node, int start, int end) { if (start == end) { tree[node] = arr[start]; } else { int mid = (start + end) / 2; int left_node = 2 * node + 1; int right_node = 2 * node + 2; build_tree(arr, tree, left_node, start, mid); build_tree(arr, tree, right_node, mid + 1, end); tree[node] = max(tree[left_node], tree[right_node]); }}void update_tree(int arr[], int tree[], int node, int start, int end, int idx, int val) { if (start == end) { arr[idx] = val; tree[node] = val; } else { int mid = (start + end) / 2; int left_node = 2 * node + 1; int right_node = 2 * node + 2; if (idx <= mid) { update_tree(arr, tree, left_node, start, mid, idx, val); } else { update_tree(arr, tree, right_node, mid + 1, end, idx, val); } tree[node] = max(tree[left_node], tree[right_node]); }}int query_tree(int arr[], int tree[], int node, int start, int end, int L, int R) { if (R < start || L > end) { return 0; } else if (L <= start && end <= R) { return tree[node]; } else { if (start == end) { return tree[node]; } else { int mid = (start + end) / 2; int left_node = 2 * node + 1; int right_node = 2 * node + 2; int max_left = query_tree(arr, tree, left_node, start, mid, L, R); int max_right = query_tree(arr, tree, right_node, mid + 1, end, L, R); return max(max_left, max_right); } }}int main() { int n, m; while (scanf("%d %d", &n, &m) != EOF) { for (int i = 0; i < n; ++i) { scanf("%d", &arr[i]); } build_tree(arr, tree, 0, 0, n - 1); for (int i = 0; i < m; ++i) { char op; int a, b; scanf("%c %d %d", &op, &a, &b); if (op == 'U') { update_tree(arr, tree, 0, 0, n - 1, a - 1, b); } else if (op == 'Q') { int res = query_tree(arr, tree, 0, 0, n - 1, a - 1, b - 1); cout << res << endl; } } }}

    代码解释

  • 构建线段树build_tree函数递归地构建线段树,每个节点存储其区间内的最大值。
  • 更新操作update_tree函数递归地更新某个位置的值,并更新路径上的所有相关节点。
  • 查询操作query_tree函数递归地查询区间内的最大值,返回结果。
  • 这种实现能够高效处理大量的区间查询和点更新操作,适用于大规模数据处理。

    转载地址:http://rwbg.baihongyu.com/

    你可能感兴趣的文章
    Objective-C实现sierpinski triangle谢尔宾斯基三角形算法(附完整源码)
    查看>>
    Objective-C实现sieve of Eratosthenes埃拉托色尼筛法算法(附完整源码)
    查看>>
    Objective-C实现SieveOfEratosthenes埃拉托色尼筛法打印所有素数算法(附完整源码)
    查看>>
    Objective-C实现sieveOfEratosthenes埃拉托色尼筛法求素数算法 (附完整源码)
    查看>>
    Objective-C实现sieveOfEratosthenes埃拉托色尼筛选法算法(附完整源码)
    查看>>
    Objective-C实现sigmoid函数功能(附完整源码)
    查看>>
    Objective-C实现Sigmoid函数算法(附完整源码)
    查看>>
    Objective-C实现similarity search相似性搜索算法(附完整源码)
    查看>>
    Objective-C实现simple binary search简单的二分查找算法(附完整源码)
    查看>>
    Objective-C实现simpson approx辛普森算法(附完整源码)
    查看>>
    Objective-C实现simpson rule辛普森法则算法(附完整源码)
    查看>>
    Objective-C实现simulated annealing模拟退火算法(附完整源码)
    查看>>
    Objective-C实现SinglyLinkedList单链表算法(附完整源码)
    查看>>
    Objective-C实现SizeBalancedTree大小平衡树(附完整源码)
    查看>>
    Objective-C实现skew heap倾斜堆算法(附完整源码)
    查看>>
    Objective-C实现Skip List跳表算法(附完整源码)
    查看>>
    Objective-C实现slack message松弛消息算法(附完整源码)
    查看>>
    Objective-C实现SlopeOne算法(附完整源码)
    查看>>
    Objective-C实现slow sort慢排序算法(附完整源码)
    查看>>
    Objective-C实现smo算法(附完整源码)
    查看>>